CS 240 Spring 2023 Midterm Reference Sheet

Order Notation Summary

such that $|f(n)| \le c |g(n)|$ for all $n \ge n_0$ *O*-notation: $f(n) \in O(g(n))$ if there exist constants c > 0 and $n_0 \ge 0$

such that $c|g(n)| \le |f(n)|$ for all $n \ge n_0$ Ω -notation: $f(n) \in \Omega(g(n))$ if there exist constants c > 0 and $n_0 \ge 0$

such that $c_1 |g(n)| \le |f(n)| \le c_2 |g(n)|$ for all $n \ge n_0$ \ominus -notation: $f(n) \in \Theta(g(n))$ if there exist constants $c_1, c_2 > 0$ and $n_0 \ge 0$

 ω -notation: $f(n) \in \omega(g(n))$ if for all constants c > 0, there exists a constant $n_0 \ge 0$ such that $c |g(n)| \le |f(n)|$ for all $n \ge n_0$

constant $n_0 \geq 0$ such that $|f(n)| \leq c |g(n)|$ for all $n \geq n_0$

o-notation: $f(n) \in o(g(n))$ if for all constants c > 0, there exists a

Techniques for Order Notation

Suppose that f(n) > 0 and g(n) > 0 for all $n \ge n_0$. Suppose that

 $L = \lim_{n \to \infty} \frac{f(n)}{g(n)}$

(in particular, the limit exists)

$$(n) \in \left\{ egin{aligned} \phi(g(n)) & ext{if } L = 0 \ \Theta(g(n)) & ext{if } 0 < L < \infty \ \omega(g(n)) & ext{if } L = \infty. \end{aligned}
ight.$$

stated conclusion to hold Note that this result gives sufficient (but not necessary) conditions for the

Please initial

Useful Sums

$\sum_{i=0}^{n-1} i = ???$ Arithmetic sequence:

?
$$\sum_{i=0}^{n-1} (a+di) = na + \frac{dn(n-1)}{2} \in \Theta(n^2) \text{ if } d \neq 0.$$

Geometric sequence

$$\sum_{i=0}^{n-1} a \, r^i = \begin{cases} a \frac{r^n - 1}{r - 1} & \in \Theta(r^{n-1}) & \text{if } r > 1 \\ na & \in \Theta(n) & \text{if } r = 1 \\ a \frac{1 - r^n}{1 - r} & \in \Theta(1) & \text{if } 0 < r < 1. \end{cases}$$

Harmonic sequence: $\sum_{i=1}^{n} \frac{1}{i} = ???$

 $H_n := \sum_{i=1}^n \frac{1}{i} = \ln n + \gamma + o(1) \in \Theta(\log n)$

$$\sum_{i=1}^n rac{1}{i^2} = rac{\pi^2}{6} \in \Theta(1)$$

$$\sum_{i=1}^{n} \frac{1}{i^2} = ???$$

$$\sum_{i=1}^{n} \frac{1}{i^2} = i!!$$

$$\sum_{i=1}^{n} i^k = ???$$

$$\sum_{i=1}^n i^k \in \Theta(n^{k+1})$$
 for $k \ge 0$

• $c = \log_b(a)$ means $b^c = a$. e.g. $n = 2^{\log n}$

Useful Math Facts

Logarithms

- log(a) (in this course) means $log_2(a)$
- $\log(a \cdot c) = \log(a) + \log(c), \log(a^c) = c \log(a), \log x \le$
- $\log_b(a) = \frac{\log_c a}{\log_c b} = \frac{1}{\log_a(b)}, \ a^{\log_b c} = c^{\log_b a}$
- $\ln(x) = \text{natural log} = \log_e(x)$, $\frac{d}{dx} \ln x = \frac{1}{x}$

- $n! := n(n-1)(n-2)\cdots 2 \cdot 1 = \#$ ways to permute n elements
- $\log(n!) = \log n + \log(n-1) + \dots + \log 2 + \log 1 \in \Theta(n \log n)$

Probability

- \bullet E[X] is the expected value of X
- E[aX] = aE[X], E[X + Y] = E[X] + E[Y] (linearity of expectation)

for some $0 < c < 1$ $T(n) = 2T(n/4) + \Theta(1)$ $T(n) \in \Theta(\sqrt{n})$ Range Search (*) $T(n) = T(\sqrt{n}) + \Theta(\sqrt{n})$ $T(n) \in \Theta(\sqrt{n})$ Interpol. Search (*) $T(n) = T(\sqrt{n}) + \Theta(1)$ $T(n) \in \Theta(\log \log n)$ Interpol. Search (*)	$T(n) = 2T(n/2) + \Theta(\log n) T(n) \in \Theta(n) \qquad \text{Heapify (*)}$ $T(n) = T(cn) + \Theta(n) \qquad T(n) \in \Theta(n) \qquad \text{Selection (*)}$	$T(n) = T(n/2) + \Theta(1)$ $T(n) \in \Theta(\log n)$ Binary search $T(n) = 2T(n/2) + \Theta(n)$ $T(n) \in \Theta(n \log n)$ Mergesort	Recursion resolves to example
--	--	--	-------------------------------

- Once you know the result, it is (usually) easy to prove by induction.
- Many more recursions, and some methods to find the result, in CS341

(*) These will be studied later in the course

Efficient sorting with heaps

- Idea: PQ-sort with heaps.
- ${\it O}(1)$ auxiliary space: Use same input-array ${\it A}$ for storing heap

HeapSort(
$$A, n$$
)

1. // heapify

2. $n \leftarrow A.size()$

3. for $i \leftarrow parent(last())$ downto 0 do

4. fix-down(A, i, n)

5. // repeatedly find maximum

6. while $n > 1$

7. // 'delete' maximum by moving to end and decreasing n

8. swap items at $A[root()]$ and $A[last()]$

9. decrease n

10. fix -down($A, root(), n$)

The for-loop takes $\Theta(n)$ time and the while-loop takes $O(n\log n)$ time.

Please initial

LSD-Radix-Sort

A: array of size n, contains m-digit radix-R numbers LSD-radix-sort(A)

for $d \leftarrow$ least significant to most significant digit **do** Bucket-sort(A, d)

23(2) 210 32(0) 02(<u>T</u>) 23(0) 10(I) 12(3) (d = 3)0@1 2(<u>D</u>)0 3<u>©</u>0 2(3)0 1@3 2(3)2 101 (d=2) \downarrow 320 ① 01 230232 @21 ①23 (d=1)230 210 123 021 320 101 232

- Loop-invariant: A is sorted w.r.t. digits d, \ldots, m of each entry
- Time cost: $\Theta(m(n+R))$

Auxiliary space: $\Theta(n+R)$

Spring 2023

Fixing a slightly-unbalanced AVL tree

restructure(x, y, z)node x has parent y and grandparent z

:// Right rotation

// Double-right rotation return rotate-right(z)

// Left rotation // Double-left rotation $z.right \leftarrow rotate-right(y)$ return rotate-right(z) return rotate-left(z) $z.left \leftarrow rotate-left(y)$

Remark: Break ties to prefer single rotation **Rule**: The middle key of x, y, z becomes the new root

return rotate-left(z)

Spring 2023

2